A Sum Rule for the Rare Decay Modes of Kaons

PRAKASH CHAND

Colorado State University, Fort Collins, Colorado Received: 16 *July* 1969

Abstract

An exact sum rule is found for the *Ke*₄ decay of Kaons and it is modified to account for the possible Charge and Parity-non-conservation.

The purpose of this paper is to derive a new sum rule (1) relating the rare leptonic decays of K-mesons, on the basis of the validity of the $I = \frac{1}{2}$ current rule (Okubo, *et al.,* 1958)t.

$$
\Gamma_{\mathbf{e}}(K^+ \to 2\pi^0 + e^+ + \nu_{\mathbf{e}}) + (1 + \epsilon)^{-1} \Gamma_{\mathbf{e}}(K_{\mathbf{L}}^0 \to \pi^- + \pi^0 + e^+ + \nu_{\mathbf{e}})
$$

= $\Gamma_{\mathbf{e}}(K^+ \to \pi^+ + \pi^- + e^+ + \nu_{\mathbf{e}})$ (1)

where the Γ 's are the total decay rates into the channels indicated, ϵ is a possible measure of the deviation from the CP invariance of weak decays. K_L and K_s are the long-lived and short-lived component of neutral K-meson.

Derivations

The differential decay probability do for $K_{\epsilon 4}$ (Dalitz, 1964) decay can be written as

$$
d\sigma = \sum \frac{(2\pi)^4}{2E_k} |M|^2 \frac{d^3 p_e}{(2\pi)^3 2E_e} \frac{d^3 p_v}{(2\pi)^3 2E_v} \frac{d^3 p_1}{(2\pi)^3 2E_1} \frac{d^3 p_2}{(2\pi)^3 E_2} \times \frac{d^4 p_e - p_e - p_v - p_1 - p_2}{} \tag{2}
$$

where the normalization is such that there are $2E$ particles per unit volume E being the energy of the particle. E_k , E_1 , E_2 , E_e and E_v are the energies and k , p_1 , p_2 , p_e and p_v are the four momenta of the K-meson, pions, electron and neutrino, respectively. The summation is over the polarization of electron and neutrino. M, the matrix element, stands for

$$
M = \frac{G}{\sqrt{2}} \Big[(f_1 k + f_2 p_1 + f_2 p_1 + f_3 p_2)^{\alpha} + f_4 \frac{\epsilon^{\alpha \beta \gamma \delta}}{M_e^2} k_{\beta} p_{1\gamma} p_{2\delta} \Big] J_{\alpha}^{\nu} \tag{3}
$$

where the f 's are form factors depending upon the invariant variables

 \dagger The $I - \frac{1}{2}$ current rule follows in a well-known way from the assumption that weak currents transform as octet under *SUj* (Cabibbo, N. (1963). *Physical Review Letters,* 10, \$31).

142 **PRAKASH CHAND**

formed from the four momenta of pions and K -meson. G is the weak coupling constant and J_{α}^{ev} is given by $J_{\alpha}^{ev} = \tilde{\nu}\gamma_{\alpha}(1 + \gamma_5)e$, where e and v are the spinors corresponding to electron and neutrino. In equation (3) the term_{$\int e^{a\beta y} k_{\beta} p_{1y} p_{2\delta} M_a^2$ has a M_a^2 in the denominator for dimensional} reasons. At the strong vertex of K-decay (strong vertices are treated to all orders) the K-meson will branch to Λ and nucleon and M would be of the order of nucleon mass. Thus the contribution of this term would be very small, and we neglect it. With a little manipulation and using Dirac equation on the leptons, (3) can be written as

$$
M = \frac{G}{\sqrt{2}} [f_{+}(p_{1} + p_{2}) + f_{-}(p_{1} - p_{2})]^{2} J_{\alpha}^{e} \tag{4}
$$

where the mass of electron has been taken to be zero. A straightforward, but tedious, calculationt gives the total decay probability

$$
\Gamma = \frac{5G^2}{2(2\pi)^6 L_6} \int \left[f_-^2 \{ (p_+ . L_+)^2 + 2(p_+^2 L_+^2) \} \left(1 - \frac{4m\pi^2}{p_+^2} \right) - 6f_+^2 \{ (p_+ . L_+)^2 - (p_+^2 . L_+^2) \} \sqrt{\left(1 - \frac{4m\pi^2}{p_+^2} \right) d^4 L_+ d^4 p_+} \right] \tag{5}
$$

where $L_{+} = p_{e} + p_{v}$.

The expression for total decay probability does not have the cross term *f+f_.* This is the fact which leads to sum rule (1), as is shown below.

The only possible decays of the kind K_{c4} allowed by conservation laws **are**

$$
K^{+} \to \pi^{+} + \pi^{-} + e^{+} + \nu_{e} \qquad (X)
$$

\n
$$
K^{0} \to \pi^{-} + \pi^{0} + e^{+} + \nu_{e} \qquad (Y)
$$

\n
$$
K^{+} \to \pi^{0} + \pi^{0} + e^{+} + \nu_{e} \qquad (Z)
$$

\n(6)

The $I = \frac{1}{2}$ **current rule (Okubo,** *et al.***, 1958) says that the pions in the** final state must be either $I = 1$ or $I = 0$ state. Whereas both $I = 0$ and $I = 1$ states are possible for the final state of X, Y and Z can have only $I = 0$ and $I=1$ final states, respectively. Let A^0 and A^1 denote the amplitude corresponding to $I=0$ and $I=1$ final state, then the equations (6) will **have** the following amplitude equation,

$$
X=\frac{A^1}{\sqrt{2}}+\frac{A^0}{\sqrt{3}}
$$

t I am thankful to Professor Sudarshan for a discussion on this tenn.

 \ddagger The calculations are simplified by using the identity $d^{3}p$. $d^{3}r$

$$
\frac{d^2 p_1}{E_1} \frac{d^2 p_2}{E_2} = 4\delta(p_1^2 - m_s^2)\delta(p^2 - m_s^2)d^4p_1d^4p_2
$$

= $\delta(p_1^2 + p_2^2 - 4m_s^2)\delta(p_1p_2)$

where $p_{\pm} - p_1 + p_2$ and m_{π} is the mass of pion. See Dalitz, R. H. (1955). *Physical Review*, 99, **915.**

$$
Y = +\frac{A^1}{\sqrt{2}}
$$

(7)

$$
Z = -\frac{A^0}{\sqrt{3}}
$$

Comparing this with (4) and remembering the symmetry of final state ions, we can writet

$$
A0 = f+(p1 + p2)
$$
 (8)

$$
A1 = f-(p1 - p2)
$$

and combining this with the discussion following (5), we get the sum rule \mathbf{r} and \mathbf{r}

$$
\Gamma_e(K^+ \to 2\pi^0 + e^+ + \nu_e) + \Gamma_b(K^0 \to \pi^- + \pi^0 + e^+ + \nu_e) = \Gamma_c(K^+ \to \pi^+ + \pi^- + e^+ + \nu_e) \tag{9}
$$

It is well known that states with definite lifetime are not K_0 and \bar{K}_0 but K_L and K_S . These states are defined by

$$
K_{s}^{0} = \frac{pK_{0} + q\bar{K}_{0}}{\sqrt{(p^{2} + q^{2})}}
$$
\n
$$
K_{L}^{0} = \frac{pK^{0} - q\bar{K}_{0}}{\sqrt{(p^{2} + q^{2})}}
$$
\n(10)

In the limiting case of CP invariance

$$
p=q=1 \tag{11}
$$

The last equation and $\Delta Q/\Delta S^+ = 1$ rule leads us to

The last equation and
$$
\Delta Q/\Delta S_+ = 1
$$
 rule leads us to
\n
$$
A(K_8^0 \to \pi^- + \pi^0 + e^+ + \nu_e)
$$
\n
$$
= \frac{p}{\sqrt{(p^2 + q^2)}} A(K^0 \to \pi^- + \pi^0 + e^+ + \nu_e) A(K_1^0 \to \pi^- + \pi^0 + e^+ + \nu_e)
$$
\n(12)

where the A 's are the corresponding amplitudes.

Equations (12) and (9) give us the following two sum rules

$$
\Gamma_{\mathbf{a}}(K^+ \to 2\pi^0 + e^+ + \nu_e) + (1 + \epsilon)^{-1} \Gamma_{\mathbf{b}}(K_{\mathbf{L}}^0 \to \pi^- + \pi^0 + e^+ + \nu_e)
$$
\n
$$
= \Gamma_{\mathbf{c}}(K^+ \to \pi^+ + \pi^- + e^+ + \nu_e) \qquad (1)
$$

where

$$
\epsilon = \frac{p^2-q^2}{p^2+q^2}
$$

t It is reasonable to *assumef+,f_ constants see* Dalitz (1964).

 \ddagger In reference it is shown that $I = \frac{1}{2}$ hadronic current for strangeness changing semileptonic decay leads to *dQ/dS = 1*

 $\frac{1}{2}$ It is well known that $K_{\epsilon 4}$ decay of short-lived Kaon is at least one order smaller than the K_{d4} decay of long-lived Kaon.

144 **PRAKASH CHAND**

We shall examine the effect of CP invariance and non-invariance on (1). ffCP is conserved, (! !) leads to

$r_t + r_t - r_t$

In case CP is not conserved but CPT hold ϵ will give us a possible deviation from CP invariance. It is worthwhile to point out that if CP non-conservation is very small $\epsilon \rightarrow 0$ and we get the sum rulet (1).

Acknowledgement

I am grateful to Professor E. C. G. \$udarshan for guidance, encouragement and improvement of the manuscript.

References

Dalitz, R. H. (1964). *Properties of Weak Interaction*. Lectures given at the International School of Physics at Varrenna, 1964. This contains other references on K-decays. Okubo, S., Marshak, R. E., Sudarshan, E. C. G., Tcutsch, W. B. and Wcinberg, S. (1958). *Physical Reriew,* 112, 665.